Board logo

标题: [学习方法] 无意间听到了这个方法,数学选择题,我靠蒙都能拿满分! [打印本页]

作者: hello22    时间: 2017-12-14 09:46     标题: 无意间听到了这个方法,数学选择题,我靠蒙都能拿满分!

人生做题千千万,难免有时会犯难;
5 k' T9 E3 R9 L: a; T: {: F不是思路太丧病,就是步骤太麻烦。
, c3 n  I& _5 f; ]- w& Q1 `1 f广大学渣只好蒙,八仙过海显神通;& N4 D3 j- D3 y4 ~. K9 n
蒙题技术哪家强?洋葱数学洋葱君。
5 v2 @0 @  D* Q: u! r; \( o& ?- l7 S话说呀,洋葱君有一个独家的考试技巧,让孩子考试的时候能发挥出 120% 的水平。
$ l. E( ]. J. e5 O6 @7 ~/ B什么叫发挥出 120% 的水平?就是让孩子把平时不会做的题,考试的时候都能做出来!
# z% }$ \6 n! r$ p7 G8 j2 f# W. Y8 h" l% |8 G7 G
人在江湖飘,哪能不挨刀。选择题做多了,难免会有那么一两道,就算能算出来,过程也会特别麻烦,得不偿失。* p) i# _8 `7 }, f# p
那这个时候应该怎么办呢?& J5 h) a3 l4 F' p2 J8 f
有些“学渣”由于经常遇到这种情况,所以战斗经验特别丰富,他们立足于选择题的题型特征,开发出了概率论的解法。
1 [2 C9 D8 Y3 A" H4 y$ k利用生活中的铅笔、硬币、骰子进行随机试验选取。( u9 A' B; i* A  J
随着进一步的拓展和研究,还有人开发出了基于心理学的角度,揣测出题人的心理。/ e) E1 v2 G5 H6 w. K" a2 e5 ~
三长一短选短,三短一长选长;
8 v3 L% M/ U4 f9 Y/ M% W两长两短选 2B,参差不齐 C 无敌。  D4 x3 v& \  V$ O+ V, T) h
这就是心理学蒙法的精华所在,就是最佳的选择题科学蒙法。
8 g' c' g: x; _/ ^/ }4 D你信了吗?!$ b- B6 p) I& ~6 v
怎!么!可!能!* q/ W4 @. k& O. b, _- t' u! |4 V$ |
这种正确率连 50% 都不到的渣渣方法,怎么可能是洋葱君推荐给孩子的呢?!* j3 @6 E1 o; H0 p! _
洋葱君今天要讲的方法,是真正的好方法,孩子要是用好了,是 100% 能把题做对的!
9 z& E. `4 c% b0 |  U; A不信来看这道题:
% f; A, k* P; |1 |7 x7 D
- l! F4 K7 Z+ p8 h# J5 U问题:把多项式 x2-y2-2x-4y-3 因式分解,结果是?( )
. i& z2 B1 _/ ]% B" F, k* vA.(x+y+3)(x-y-1)
* f6 x$ j% i9 yB.(x+y-1)(x-y+3)( M1 F( z+ `. |/ W$ Z: S
C.(x+y-3)(x-y+1); T+ n5 W! l& L$ m1 d7 e
D.(x+y+1)(x-y-3)) ~* o0 A) g  G) h2 U$ e7 [
孩子在看到这道题的时候,心中可能就万马奔腾了:这二次五项式的因式分解,谁能做得出来?+ [$ j+ m- b3 T/ K% o
好,既然正常的解法做不出来了,那么开始蒙吧。- s* T* l. \; n6 e5 E3 A5 g
我们先让 “x=y=1”,依次验证各个选项,发现只有 D 选项的和原式的结果是相等的,所以这道题就选 D。
9 [6 T: S7 a. ^0 z6 i8 M, K4 ?, x$ H就这样,题做完了。% s' m9 z% i4 h5 \" `+ V1 ?4 p
这时候可能孩子心里就纳闷儿了,凭什么就选 D,就凭它跟原式的结果相等吗?!* L7 Q3 a; v1 ~# W2 j
哎,还真是这样。为什么呢?
% k2 |6 E8 @$ ~% {9 F因为因式分解前后的式子,只是形式不同,但是它分解前后必须是完全相等的。
, @" O7 u$ I! u那么我们把 x,y 随便取一个值,算出来,这个原式,和分解后的式子,算出来的结果肯定要是相等的才对。. f1 \$ f! b; S& ?; R  K
但是这道题的选项里面,A,B,C 都不符合,肯定要排除掉;只有 D 符合,所以答案一定是 D。) L) x, \, e# B% J, y" x
当然,平心而论,仅凭 “x=y=1” 这一个特值,我们验证了 D 选项和原式结果相等,是不足以证明 D 选项的式子就和原式相等的。
+ L6 ]! a# `6 ~# W: `# F4 G1 {5 P但是不要忘了,这是一道选 择 题,一共只有 4 个选项,我们排除掉 3 个,那剩下的一个,一定是正确答案。1 j# o0 {& O- V9 s3 R% J
, `/ b$ J1 N6 K( h; V
所以说白了,这个方法就是选取一个“特殊值”,来把选项进行排除,我们就给这种方法取名为“特值排除法”。; d! ~4 D( A2 p/ a" k
如果不用这个特值排除法,这道选择题的“正规”解法那是匪夷所思的复杂。
. t+ m0 c/ G% `) x就算孩子天赋异禀,在考试中也没有必要在这样的选择题上耗时间,特值排除法能大幅节约孩子在考场上的解题时间。+ c. Q1 t0 P3 y8 ~
特值排除法的关键,就在于利用了选择题的题型特征,巧妙地用特殊值把其他 3 个选项排除,选出正确的选项。
9 Z8 g& I# h7 r4 Z+ a这样的蒙,才叫科学的蒙,像什么扔骰子、扔硬币,那和放弃这道题有什么区别!4 H  D7 n! O! j5 c; Z/ W  M" G
所以,之后孩子遇到因式分解、求范围的选择题,要是搞不定的话,就先用特制法抢救一下再说!: @2 ~' g6 v* B* e3 m6 ^# ~0 f
只要用对了,正确率 100%" G+ F2 _6 V5 U
, K& C& {1 x9 h; n8 l2 ?
但是有人可能就问了,这样的方法是适合化简和函数的吧,那遇到几何题可咋整?
$ B2 q) P! d3 m' w; J! }这个问题问得好,下周,洋葱君就讲讲几何选择题应该怎么做,保证只要掌握了方法,正确率还是 100%!




欢迎光临 人教学习网论坛 (http://bbs.gopep.cn/) Powered by Discuz! 7.2